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From numerical solutions of a gyrokinetic model for ion temperature gradient turbulence it is shown that
nonlinear coupling is dominated by three-wave interactions that include spectral components of the zonal
flow and damped subdominant modes. Zonal flows dissipate very little energy injected by the instability,
but facilitate its transfer from the unstable mode to dissipative subdominant modes, in part due to the small
frequency sum of such triplets. Although energy is transferred to higher wave numbers, consistent with
shearing, a large fraction is transferred to damped subdominant modes within the instability range. This is a
new aspect of regulation of turbulence by zonal flows.
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Turbulence driven by ion gyroradius-scale microinst-
abilities limits confinement in magnetically confined fusion
plasmas [1]. The turbulence saturates when the rate of
energy injection by the instability is balanced by the rate of
energy dissipation. In the traditional view, dissipation arises
at small scales. However, plasma instabilities represent one
root (or a few) of dispersion relations that typically have
many other stable roots at any given wave number of the
spectrum. These modes dissipate energy at large scales,
within the wave number range of the instability. They are
excited to finite amplitude by three-wave interactions that
couple unstable and stable modes of a wave number triplet
[2]. Such modes have been shown to be the dominant
saturation mechanism in a variety of fusion plasma turbu-
lence models [3]. The energy dissipation rate in the wave
number range of the instability is comparable to the
instability energy injection rate, creating a saturation
process that is fundamentally different from a cascade to
collisionally dissipative, large wave numbers.
Ion temperature gradient (ITG) driven turbulence, an

important contributor to ion heat transport in tokamaks, is
regulated by zonal flows, i.e., self-generated, toroidally and
poloidally symmetric, radially sheared E ×B flows [4].
Zonal flows are driven to high amplitude in ITG turbulence
as a result of turbulent interactions [5,6]. Conventionally,
the regulation of ITG turbulence by zonal flows is
explained by zonal flow shearing [6]: zonal flows shear
apart turbulent eddies, causing enhanced energy transfer to
small dissipative scales and saturating ITG turbulence.
Given that stable modes have also been found to be
important in the saturation of ITG in both fluid and
gyrokinetic analyses [7], it is crucial to investigate the role
of stable modes in zonal-flow-regulated ITG turbulence.
In Ref. [8], analysis of a simple two-field fluid ITG

model uncovered evidence for a different mechanism of

zonal flow regulation. Zonal flows provide a high-effi-
ciency energy-transfer channel from the unstable mode to a
large-scale stable mode that saturates the turbulence. With
efficient transfer, the turbulence level is low. Because the
zonal flow absorbs only a small fraction of the energy
transferred, it acts as a catalyst. However, the fluid model
treats the enhanced nonlinear excitation of zonal flows
artificially, includes only one stable mode, and its modeling
of dissipation has only crude collisional diffusivities with
no kinetic resonance effects. Thus, the essential analysis of
the role of stable modes in zonal flow regulation using
gyrokinetics [9,10], which overcomes the deficiencies of
the fluid model, is given here.
We use the gyrokinetic code GENE [11], developing

diagnostics that trace energy transfer between zonal flows,
the unstable mode, and stable modes. These measure the
partition of energy flow in the joint space of perpendicular
wave number and the phase space of parallel motion
spanned by stable modes. We probe the efficiency of
energy transfer channels by measuring nonlinear triplet
correlation times and amplitude dependence. GENE

describes plasma dynamics in terms of the modified
perturbed ion distribution function gðkx; ky; z; v∥; μ; tÞ
(see Ref. [12]). Here the radial and binormal wave numbers
are denoted by kx and ky, normalized to the ion sound
gyroradius ρs. Also, z is the equilibrium magnetic-field-
line-following coordinate, v∥ is the velocity in z direction, μ
is the magnetic moment, and t is time. We simulate Cyclone
base case parameters with adiabatic electrons and only
electrostatic perturbations [13], using resolutions of
(128,16,16,32,8) for (kx, ky, z, v∥, μ).
To study the energy transfer that underpins saturation,

we look at the free energy (see Eqs. (5) and (10) of
Ref. [14])
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referred to as the “energy” from here on. Here, Ĵ is the
normalized Jacobian, B0 is the equilibrium magnetic field,
F0 is the background Maxwellian distribution function of
the plasma, gk is g at (Fourier) wave number k ¼ ðkx; kyÞ;
n0, T0, and q are the background density, temperature, and
charge, respectively; and ϕ̄ is the gyroaveraged electrostatic
potential. The evolution equation for the energy at a
particular Fourier wave number, ðdEk=dtÞ ¼ Qk þ Ckþ
Rk þ ðdEk=dtÞjNL, follows from the gyrokinetic equation.
Here, Qk is proportional to the heat flux and provides the
gradient drive, whereas Ck represents dissipation. We use
artificial hyperdiffusion for Ck [12]. Expressions for these
quantities can be found in Ref. [15]. These two terms are
responsible for net energy injection into or dissipation out
of the system. Unlike Qk and Ck which are symmetric in k,
Rk is a linear term depending on the gradient and curvature
drifts, which is antisymmetric in k, i.e., Rk ¼ −R−k.
Considering energy dynamics for a pair of k and −k
doubles Qk and Ck while eliminating Rk; hence, we ignore
Rk. The term ðdEk=dtÞjNL represents conservative energy
transfer between wave numbers via nonlinear three-wave
interaction. It is given by

dEk

dt

����
NL

¼ Re
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×
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��
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The effect of zonal flows on fluctuation amplitudes is well
known. With Eq. (2) we quantify their effect on energy
transfer rates. We separate the rhs into interactions that
include a zonal wave number and those that do not. Zonal
wave numbers have ky ¼ 0. Restricting the sum over k0 to
terms with either k0y ¼ 0 or ky − k0y ¼ 0, one is calculating
three-wave interactions that include a zonal wave number in
the drive of nonzonalwave number k. Conversely, restricting
the sum over k0 to exclude these wave numbers provides
coupling to nonzonal wave numbers. We normalize the
coupling rates to the energy, γNL ≡ ð1=EkÞðdEk=dtjNLÞ,
looking at the most energetic wave number, k ¼ ð0; 0.25Þ,
in two cases. In the first case, zonal flows are artificially
suppressed by zeroing the flux-surface-averaged electro-
static potential at every time step. On time average, the
normalized coupling rate with zonal wave numbers (magni-
tude of −0.02) is very small compared to the normalized
coupling ratewith nonzonal wave numbers (−0.09).We still
get a nonzero zonal coupling because only ϕ̄ðky ¼ 0; kz ¼
0Þ is made zero, whereas gðky ¼ 0; kz ¼ 0Þ is left
unchanged. In the other case, when the zonal potential is
allowed to evolve self-consistently; the normalized coupling

with zonal wave numbers is strong (−0.18) compared to the
normalized nonzonal coupling (−0.075).
The change in relative coupling between zonal and

nonzonal transfer channels indicates that transfer to zonal
wave numbers is relatively stronger when the zonal flow is
not suppressed. While the selection for zonal wave num-
bers encompasses many moments of the distribution (zonal
flow, zonal pressure, etc.), the fact that a deletion of zonal
flow causes drastic changes indicates that it is the coupling
to zonal flows that drives the strong coupling with zonal
wave numbers. Although it is possible that deleting other
zonal moments (density, pressure, etc.) could also lead to
significant changes [16], explicit measurements in the fluid
model [8] show that energy transfer is dominated by zonal
flows relative to zonal pressure.
To measure stable mode activity among the modes

spanning z, v∥, and μ for each k, we use proper orthogonal
decomposition (POD) [15]. Under POD, the distribution

function at k becomes gkðz; v∥; μ; tÞ ¼
P

nψ
ðnÞ
k ðz; v∥; μÞ×

βðnÞk πðnÞk ðtÞ. Here, ψ ðnÞ
k ðz; v∥; μÞ is the nth POD mode, βðnÞk is

its singular value, and πðnÞk ðtÞ is its time-dependent coef-
ficient. These modes are useful for energy analysis
because they are orthogonal under an inner productR
dzdv∥dμð1=F0ÞπB0ĴðzÞψ�ðmÞ

k ψ ðnÞ
k ¼ δm;n. However, the

electrostatic potential modes ϕ̄ðmÞ derived from POD
modes ψ ðmÞ are nonorthogonal. Substituting the POD in
the energy expression (Eq. (1)), we get one term propor-
tional to

P
njβðnÞπðnÞj2 from the orthogonal POD modes

and another term from the nonorthogonal potential modes.
However, the nonorthogonal term is much smaller than the
orthogonal term [less than 15% for k ¼ ð0; 0.25Þ]. Hence,
we ignore this nonorthogonal contribution and define the

energy of a POD mode as EðnÞ
k ≡ jβðnÞπðnÞj2.

The energy dynamics of a POD mode is derived by
multiplying the gyrokinetic equation by a POD mode and
using the orthogonality relationship. It is of the form

dEðnÞ
k =dt ¼ QðnÞ

k þ CðnÞ
k þ RðnÞ

k þ ðdEðnÞ
k =dtÞjNL. As for

the Fourier modes, QðnÞ
k and CðnÞ

k represent the heat flux
and dissipation terms of the nth POD mode, which are

nonconservative, and RðnÞ
k is ignored as before. Calculating

the time average of the sum of these two terms, we find that
the first POD mode is unstable as it linearly inputs energy

(positive Qð1Þ
k þ Cð1Þ

k ) into the system. It has a mode
structure very similar to the linearly unstable ITG mode
[15]. The other modes (n ≥ 2) are the subdominant modes,
of which more than 99% are damped (negative

QðnÞ
k þ CðnÞ

k ). Nonlinear interactions of the POD modes
are very similar to the Fourier mode triplets,

ðdEðnÞ
k =dtÞjNL ¼ P

k0T
ðnÞ
k;k0 , where TðnÞ

k;k0 represents the
three-wave interaction between the wave numbers k, k0,
and k − k0:
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We look at the time-averaged and k0x-summed spectrum of

this nonlinear transfer,
P

k0xhT
ðnÞ
k;k0 it, in Fig. 1. In Fig. 1(a),

we see that the first POD mode at k ¼ ð0; 0.25Þ couples
primarily with k0y ¼ 0.25. This indicates a coupling with
zonal modes because the third wave number in this triplet
interaction has ky − k0y ¼ 0. The sign of transfer is neg-
ative, with energy nonlinearly transferred out of the
unstable POD mode. This exercise is repeated at zonal
wave number k ¼ ð0.1; 0Þ, which has one of the highest
zonal flow amplitudes. Figure 1(b) shows the net energy
transfer spectrum of this wave number, summed over all
POD modes. The positive transfer indicates that it receives
energy nonlinearly and is linearly weakly damped. The
peak of the energy transfer to this wave number is ∼0.3
units, compared with the nonlinear transfer out of the
unstable POD mode at k ¼ ð0; 0.25Þ in Fig. 1(a), which is
∼2 units. The zonal wave number k ¼ ð0.1; 0Þ absorbs
energy from many modes, of which k ¼ ð0; 0.25Þ is only
one; similarly, the unstable POD at k ¼ ð0; 0.25Þ interacts
with several zonal modes, of which k ¼ ð0.1; 0Þ is only
one. Nonetheless, we conclude that roughly one tenth of the
energy coming out of the unstable mode at k ¼ ð0; 0.25Þ is
deposited into k ¼ ð0.1; 0Þ, of which the zonal flow is the
dominant component. This is shown by a more thorough
analysis below. As the energy is conserved, nine tenths of it
should be deposited in the third mode in the three-wave
interaction. Therefore, the zonal flow acts as a mediator of
energy transfer: it is a component of the dominant energy
transfer channel but absorbs only a small fraction of the
steady-state transfer.
To which modes (unstable or subdominant) at the third

wave number is this energy transferred? To answer this, we
look at individual triplets and break them down into POD

modes (breaking all triplets into POD is computationally
very expensive). It can be shown that energy is conserved in

a triplet: Tð1Þ
k;k0 þ TðSÞ

k;k0 þ Tð1Þ
k0;k þ TðSÞ

k0;k þ Tð1Þ
k−k0;k þ TðSÞ

k−k0;k ¼ 0.
Here, S denotes all the subdominant modes summed

together. Tð1=SÞ
k;k0 represents the energy transfer of the

unstable or subdominant mode at k due to interaction with
k0 and k − k0. We select k0y ¼ 0 to make this a zonal mode
triplet. Looking at these terms individually clearly shows
the energy transfer occurring within a triplet.
We start by looking at k ¼ ð0; 0.25Þ, k0 ¼ ð0.1; 0Þ, and

k − k0 ¼ ð−0.1; 0.25Þ. Its energy transfer terms are shown
in block 1 of Fig. 2. The unstable mode at k transfers

Tð1Þ
k;k0 ¼ −119 units of energy, summed over time in the

saturated phase. By energy conservation, this is distributed
amongst the other modes. Part goes into the higher-k

unstable mode at (−0.1, 0.25), Tð1Þ
k−k0;k ¼ 66, and part goes

into the zonal mode, Tð1Þ
k0;k þ TðSÞ

k0;k ¼ 8. As in Fig. 1(b), this
is roughly one tenth of the energy input by the instability
(119 units). The remainder of the energy goes to subdomi-

nant modes: TðSÞ
k;k0 ¼ 21 units are absorbed at the original

wave number k, while TðSÞ
k−k0;k ¼ 24 units are taken up at

k − k0. Of the 21 units, 15 go to the second POD mode at k,
which is unstable, and 6 go to stable subdominant modes.
Thus k injects 119 − 6 ¼ 113 units of energy into this
triplet. Of this, 21% (24 units) is transferred to the damped
subdominant modes at k − k0. In the subsequent blocks, all
the subdominant modes at nonzonal wave numbers are
damped. The percentages of energy transferred to damped
subdominant modes in blocks 2, 3, 4, and 5 are 20%, 26%,
15%, and 27%, respectively. Combining the above per-
centages, 29% of the energy remains in the unstable modes
at the end of block 5, while 71% has gone to damped
subdominant modes. The energy transfer quantities in
Fig. 2 are bispectral averages that require large ensembles
to converge. Limited by computing time, we ran simu-
lations with double the number of time steps to estimate
that these quantities are uncertain within a factor of 2.
However, the overall percentage of energy transferred to
damped modes in the first five blocks remains large—92%
in the longer simulation versus 71% in the shorter.
This calculation was repeated for another set of triplets
starting at k ¼ ð0; 0.2Þ with the zonal wave number as
k0 ¼ ð0.05; 0Þ. By the end of block 5 at k − k0 ¼ ð−0.25;
0.2Þ, the damped subdominant modes had absorbed 57% of
the energy.
The data in Fig. 2 can be used to quantify the importance

of dissipation by low-k damped modes compared to
nonlinear energy transfer to high-k by constructing
R−1 ¼ ðk=TkÞðdTk=dkÞ [17]. This dimensionless quantity
is proportional at each k to the ratio of the rate of net energy
dissipation, γkEk, to the rate of conservative energy trans-
fer, where γk is the difference of the linear instability

FIG. 1 (color online). Time-averaged and k0x-summed nonlinear
transfer spectrum,

P
k0xhT

ðnÞ
k;k0 it, as a function of k0y. First 1000

POD modes are considered. (a) is for n ¼ 1, k ¼ ð0; 0.25Þ; (b) is
for sum over all n ¼ 1; 2; 3;…; 1000, k ¼ ð0.1; 0Þ. Positive
values of Tk;k0 indicate energy flowing into mode k whereas
negative values show energy flowing out of k.
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growth rate γunst and the net damping rate γdamp, arising
from the nonlinear excitation of damped modes. In Navier-
Stokes turbulence R is equal to the Reynolds number at the
outer scale and R ¼ 1 at the Kolmogorov scale. From Fig. 2
four values of R are obtained from differences of T between
blocks. These are R−1 ¼ 0.27 for kx¼−0.1, R−1¼1.04 for
kx ¼ −0.2, R−1 ¼ −2.77 for kx ¼ −0.3, and R−1 ¼ −0.64
for kx¼−0.4. For R < 0, γdamp > γunst and vice versa. With
γk ¼ γunst − γdamp, jR−1j is a lower bound on the quantity of
interest to us, i.e., the ratio of stable mode energy
absorption relative to energy transfer. Based on typical
values of γunst and γdamp for kx < 0.4, this ratio is typically a
factor of 3 larger than jR−1j. We conclude that for kx < 0.4,
the energy absorption rate can be quite large (up to factor
∼10) relative to the nonlinear energy transfer rate.
Figure 2 shows that the direction of energy transfer is

from lower to higher radial wave numbers (“forward
cascade”). The wave numbers in the figure do not lie in
the high-k stable range conventionally associated with
dissipation (jkxj ≥ 0.5 for ky ¼ 0.25). We calculate the
ratio of net energy transfer to wave numbers within the
unstable range to net transfer to wave numbers in the stable
range for the first POD mode,

P
k0T

ð1Þ
k;k0 . This is done for the

nine wave numbers between −0.05 ≤ kx ≤ 0.05 and
0.1 ≤ ky ≤ 0.2. Energy transfer is considered to be within
the unstable range if the sum over k0 is restricted to include
only k0 values with jk0xj, jk0yj, jkx − k0xj, jky − k0yj < 0.5.
Excluding these values from the sum gives the transfer to
the stable range. The ratio of these two transfers for the nine
wave numbers is around 4 on average, which indicates that
for all the energy transferred to the high-k stable range,
there is 4 times as much energy transfer to the unstable
wave numbers. So while there is forward transfer, a large
fraction of the injected energy is transferred to stable
subdominant modes at low wave numbers before it reaches
the conventional dissipation region.
The interaction of the unstable mode, zonal flow, and a

subdominant mode dominates nonlinear transfer because of
a combination of effects rooted in the three-wave correla-

tion hπðlÞ�k πðmÞ
k0 πðnÞk−k0 i, which governs the strength of transfer.

From closure theory [18], hπðlÞ�k πðmÞ
k0 πðnÞk−k0 i ¼ F½ðjπj2Þ2�=

ðjω̂ðlÞ�
k þ ω̂ðmÞ

k0 þ ω̂ðnÞ
k−k0 j), where F is a function of the

squared POD amplitudes πðl;m;nÞ; l, m, and n are
the POD numbers; and ω̂ðl;m;nÞ are the nonlinear frequen-
cies, estimated by fitting a Lorentzian to the frequency
spectrum (see Ref. [19]). Figure 1 shows that triplets

(hπðlÞ�k πðmÞ
k0 πðnÞk−k0 i) that include a zonal mode are stronger

relative to nonzonal triplets. Part of the reason is that the
potential amplitude, π, at zonal modes is an order of
magnitude higher than at nonzonal modes, whereas the
situation is reversed when the zonal flows are suppressed.
This higher amplitude leads to a higher F function for zonal
mode triplets. Another part of the reason lies in the

frequency sum, jω̂ðlÞ�
k þ ω̂ðmÞ

k0 þ ω̂ðnÞ
k−k0 j, plotted in Fig. 3.

We select k ¼ ð0; 0.2Þ, k0x ¼ 0.1 and scan over k0y. At k the
first POD mode is selected (l ¼ 1), and m and n are varied
over 1, 3, 5, 10, and 20. The average of these 5
combinations is also plotted. First, on average the minimum
frequency sum is found at k0y ¼ 0, a zonal mode coupling,
and k0y ¼ 0.2, also a zonal coupling, since ky − k0y ¼ 0.
Second, at both k0y ¼ 0 and k0y ¼ 0.2 the triplets with
subdominant modes, i.e., m ¼ n ¼ 3; 5; 10; 20 show lower
frequency sums than unstable mode triplets with m, n ¼ 1.
This shows that frequency matching is minimum between a
triplet of unstable mode, zonal mode, and subdominant
mode, thus maximizing energy transfer.

FIG. 2. Energy transfer in three wave interactions, e.g., in block 1,
P

tT
ðnÞ
k;k0 ¼ −119 for n ¼ 1, k ¼ ð0; 0.25Þ, and k0 ¼ ð0.1; 0Þ.

Similarly, in block 2,
P

t;nT
ðnÞ
k;k0 ¼ 24 for n ¼ 2; 3;…, k ¼ ð−0.2; 0.25Þ, and k0 ¼ ð−0.1; 0.25Þ. See the text for discussion.

FIG. 3 (color online). (Color online) Frequency sum, jω̂ðlÞ�
k þ

ω̂ðmÞ
k0 þ ω̂ðnÞ

k−k0 j, scanned over k0y for k ¼ ð0; 0.2Þ, k0x ¼ 0.1.
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We have shown that the energy injected by the instability
strongly couples with the zonal flows and a stable mode.
The zonal flows catalyze energy transfer to the subdomi-
nant modes, which are damped. The remainder is cascaded
to higher radial wave numbers. At each stage of this
cascade, a large fraction of the injected energy is transferred
to damped subdominant modes that lie within the range of
unstable wave numbers. This energy transfer to low-k
damped modes can be several times the energy transfer
to high-k modes. This is distinct from the shearing
paradigm of zonal flows, which enhances conservative
energy transfer to the high-k, stable range. It shows that
coupling to subdominant modes cannot be ignored in the
analysis of zonal-flow-regulated ITG turbulence.

Simulations were performed on Ranger supercomputer
at TACC and Hopper supercomputer at NERSC. This work
was supported through DOE Contract No. DE-FG02-
89ER53291.
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